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Abstract 

For a data set collected around Baja California with chlorophyll-a concentration ((ch1-a)) ranging from 0.16 to 11.3 mg/m^ hyperspectral 
absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote-sensing reflectance using a newly 
developed ocean-color algorithm. The derived spectra were then compared with those measured from water samples using the filter-pad 
technique, and an average difference of 21.4% was obtained. These resuhs demonstrate that the inversion algorithm worked quite well for the 
coastal waters observed and suggest a potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory 

pigments. 
© 2003 Elsevier Inc. All rights reserved. 

Keywords: Absoiption spectrum of phytoplankton pigments; Inversion algorithms 

1. Introduction 

Absorption of phytoplankton play important roles in 
modulating subsurface light field and contributing to pho- 
tosynthesis (Gordon et al., 1988; Morel, 1988; Platt & 
Sathyendranath, 1988). Decades of field study have found 
that the spectra of phytoplankton absorption (a<),(/l)) vary in 
both magnitude and spectral shape (Ciotti, Lewis, & Cullen, 
2002; Hoepffner & Sathyendranath, 1991; Kirk, 1986; 
Sathyendranath, Lazzara, & Prieur, 1987), with the differ- 
ence an indication of different pigment compositions (Bidi- 
gare, Ondmsek, Morrow, & Kiefer, 1990; Hoepfiftier & 
Sathyendranath, 1991; Sathyendranath et al, 1987) or cell 
sizes (Ciotti et al., 2002). Hoepffner and Sathyendranath 
(1993) demonstrated that pigment compositions can be 
derived fi-om a hyperspectral a^Jl^k) spectrum after applying 
a series of Gaussian bands reflecting absorption by phyto- 
plankton pigments (Hoepffner & Sathyendranath, 1993); 
Ciotti et al. (2002) indicated that phytoplankton cell size 
can be implied from hyperspectral 04,(1); Cullen, Davis, and 
Lewis (1997) suggested using phytoplankton absorption to 
detect harmful algal blooms; and Millie et al. (1997) used 

* Corresponding author. Tel.: +1-228-688-4873. 
E-mail address: zplee@nrlssc.navy.mil (Z.P. Lee). 

a^{X) to analyze the abundance of Gymnodinium breve (red 
tide dinoflagellate). All these analyses require that hyper- 
spectral a^{X) spectra be inputted, as measured by the filter- 
pad transmission techniques after water samples are collect- 
ed (Bricaud & Stramski, 1990; Mitchell & Kiefer, 1988; 
Mueller & Fargion, 2002). This measurement approach, 
however, can only be applied to discrete water samples, 
impractical for measurements over large areas. 

Water color can be effectively measured over broad 
regions using satellite sensors, and it has been demonstrated 
that chlorophyll-fl concentrations ((chl-a)) can be derived 
from the measurements of water color (Gordon et al., 1983; 
Morel & Prieur, 1977). Current ocean-color remote sensing, 
limited by algorithms and sensor configurations, are mainly 
focused on the retrieval of (chl-a) (Carder, Chen, Lee, 
Hawes, & Kamykowski, 1999; Doerffer & Fisher, 1994; 
More! & Gentili, 1996; O'Reilly et al., 1998). Since 
information on accessory pigments can help the differenti- 
ation into major phytoplankton classes or taxonomic groups 
(Hoepffner & Sathyendranath, 1993), it would be a great 
enhancement to ocean-color remote sensing if information 
regarding accessory pigments can also be retrieved from 
water color. For this purpose, one approach is to retrieve 
a/j^iX) spectra from ocean-color remote sensing. 

Most existing methods (Bukata, Jerome, Bruton, Jain, & 
Zwick, 1981; DoeriEfer & Fisher, 1994; Garver & Siegel, 

0034-4257/$ - see front matter ( 
doi:10.1016/j.rse.2003.10.013 

I 2003 Elsevier Inc. All rights reserved. 
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1997; Hoge & Lyon, 1996; Lee, Carder, Peacock, Davis, & 
Mueller, 1996; Maritorena, Siegel, & Peterson, 2000; Roes- 
ler & Perry, 1995) in ocean-color inversion require a prior 
knowledge of the spectral shape of a.|,(A). These inversion 
methods, though, working well in deriving the major 
properties such as the chlorophyll-a concentrations, prevent 
the independent derivation of a^,(A) spectra since its spectral 
dependence is assumed known already and is used during 
the refrieval process. Actually, the spectral dependence of 
a<t,(A) is a property to be derived from remotely sensed data. 
Also, incorrect assumptions regarding a^(X) shape will lead 
to errors in retrieved properties. 

The quasi-analytical algorithm (QAA) recently devel- 
oped by Lee, Carder, and Amone (2002) does not need a 
hyperspectral a^(A) spectrum in the ocean-color inversion 
process. The algorithm was tested with multi-band, com- 
puter-simulated data and found that a.|,(A) retrieved from 
remote sensing were within - 15%of the input values (Lee 
et al., 2002). For the derivation of a^,(/l) spectra, however, it 
is not known how well QAA performs with field collected 
hyperspectral data. 

In this study, QAA is applied to a data set collected from 
waters around Baja California, which bears no relation to 
the data set used in algorithm development (Lee et al., 
2002). Using measured hyperspectral remote-sensing reflec- 
tance as input, the absorption spectra of phytoplankton 
pigments were analytically calculated. The derived spectra 
were then compared with those measured from water 
samples using the filter-pad technique. The study here 
intends to test the performance of the algorithm using an 
Independent data set from field measurements, and to look 
at the potential to independently retrieve a^(X) spectra from 
hyperspectral remote sensing. 

2. Data and measurement methods 

Field data collected in October 1999 around Baja 
California during the Marine Optical Characterization 
Experiment 5 (M0CE5) were used in this study. Fig. 1 
indicates the locations of the 20 stations where measure- 
ments were made, with the number in the parenthesis for 
the measured attenuation coefficient at 490 nm (7^^(490)). 
For each station, remote-sensing reflectance was measured 
using a handheld spectroradiometer, while phytoplankton 
pigment absorption coefficients were measured from col- 
lected water samples using the GF/F filter-pad transmission 
technique (Bricaud & Stramski, 1990; Mitchell & Kiefer 
1988). 

2.1. Above-surface remote-sensing rejlectance. R,.,(k) 

Above-surface remote-sensing reflectance {R^^) is de- 
fined as the ratio of the water-leaving radiance to the 
downwelling irradiance just above the surface. As water- 
leaving radiance cannot be directly measured from above 

10'-" w 

Fig. 1. Location.s of data collected in this study. Values in parenthesis are 
the attenuation coefficient at 490 nm of that station. 

the surface, /?„ was determined by correcting for the 
surface-reflected skylight and solar glint from the mea- 
sured upwelling radiance, using a method (Lee, Carder, 
Steward et al., 1996) extending the approach described in 
Carder and Steward (1985). 

Briefly, multiple spectra of above-surface upwelling 
radiance (Z.^) and downwelling sky radiance (Z-s^y) were 
collected during daylight stations from the bow of the ship 
to avoid ship shadow and wake bubbles. Z,„ was measured at 
30° from nadir and 4ky was measured at 30° from zenith, 
both in a plane 90° to the solar plane. The instrument used 
was a custom-made, hand-held 512-channel spectroradiom- 
eter with wavelengths ranging from 360 to 890 nm, and it 
was equipped with a 10° field stop. The water-leaving 
radiance was then calculated by subtracting from the total 
upwelled radiance the portion of the skylight reflected into 
the sensor along with any solar glint (Lee, Carder, Steward 
et al., 1996): 

iw = iu - r{i) X Asky(/) - AE, d. (1) 

where ;•(/) = 0.022, which is the Fresnel reflectance for the 
zenith angle (0 at 30°. For open ocean waters, Af^, a solar 
glint correction, is estimated by assuming /,w(750) = 0. For 
coastal waters, AE^ is estimated iteratively (Lee, Carder, 
Steward et al., 1996) without assuming /,w(750) = 0. 

Using the measured radiance (La) normal to a standard 
diffuse reflectance panel (Spectralon), the total downwelling 
irradiance (Ea) is determined by Ea = nLc/Rc, where Re is 
the reflectance of the diffuse panel (~ 10%). Then, R^ = 
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LJEd. In the process of calculating L^ the averaged spectra 
of iu and Lsky were used (Lee, Carder, Steward et al., 1996) 
after discarding any obvious outliers. 

2.2. Phytoplankton pigment absorption coefficient, a^(X) 

Phytoplankton pigment absorption coefficient (a^) was 
measured following the SeaWiFS protocols (Mueller & 
Fargion, 2002). Basically, surface water samples collected 
with an 8-1 Niskin bottle were immediately filtered under low 
pressure through 2.5 cm GF/F filters. The volume of water 
filtered varied between ~ 0.2 and 6.0 1 depending on the 
concentration of particles in the sample. The method de- 
scribed in Mitchell and Kiefer (1988) was used to measure 
the particle absorption coefficients (Op), and the method 
developed by Kishino, Takahashi, Okami, and Ichimura 
(1985) and modified by Roesler, Perry, and Carder (1989) 
was used to measure the detritus absorption (aj) in order to 
calculate the pigment absorption coefficient (a^). In the 
calculations of a^ and a^, the ")S factor" fi-om Carder et al. 
(1999), which is an average of two published formulations 

(Bricaud & Stramski, 1990; Nelson & Robertson, 1993), was 
used for the correction of the optical-path elongation due to 
filter-pad multiple scattering. The difference between ap(/l) 
and ad(A) provided a^{X). The final a^(A) spectra were 
obtained by adjusting the calculated spectra until a.|,(780) = 0. 

3. Inversion methods 

The Lee et al. (2002) QAA was used to derive the 
absorption spectrum of phytoplankton. Table 1 provides a 
shortened description of the inversion process (details of the 
algorithm can be found in Lee et al, 2002). Briefly, the total 
absorption spectra (a(/l)) are first derived fi-om the hyper- 
spectral remote-sensing reflectance (RJi^X)), after selecting a 
reference wavelength (AQ, 555 or 640 nm) and applying a 
hyperbolic spectral model (Gordon & Morel, 1983) for 
the particle backscattering coefficient (bbp(A)). Using the 
values of a(410) and a(440) with the estimated values of 
C( = a^(410)70^440)) and ^(=ag(410)/ag(440)), the gelbst- 
off absorption coefficient at 440 nm (ag(440)) is calculated 

Table 1 
Steps of deriving phytoplankton absorption spectrum from hyperspectral remote-sensing reflectance 

Steps 

Step 0 

Step 1 

Step 2 

Property 

«(A)=- 
bb{A) 

" a{X) + bb(A) 

a(Ao): a(555) or a(640) 

Derivation 

=RJ{0.52+\.1R^) 

_ -0.0895 + 00.0895)-+4g,;-„(A) 

= 20.1247 

a(555) = 0.0596 + 0.2(a(440)i - 0.01), 

fl(440)i = exp(-1.8 - 1.4p + 0.2p2), 

p = ln(r„(440)A„(555)) 

Step 3 

Step 4 

Step 5 

Step 6 

Step? 

bbp(Ao) 

Y 

bbp(A) 

a{X) 

f=a4410)/a4,(440) 

u(^)fl(Ao) 
bb„(Ao) 

1 - «(Ao) 

= 2.2(1 - i.2e-"'''"<*'")/''"<'"') 

= bbp(A„)(^) 

(l-«(A))(bbw(A) + bbp(/l)) 

u(X) 

= 0.71 + 
0.06 

0.8 + r„(440)/r„(555) 

Step 8 

Step 9 

Step 10 

,^ = ag(410)/ag(440) 

ag(440) (a(410) - Ca(440))     (aw(410) - ja^i^)) 

i-C i-C 

-- a(X) - ag(440)e- ^^ ' '^°> - aM)  
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by solving a set of simple algebraic equations (Lee et al., 
2002). Since a(A) can be expressed as: (Carder et al., 1991; 
Gordon, Smith, & Zaneveld, 1980) 

0.25 

a(;.) = aw(/".)+ag(x) + fl,l,(A), (2) 

and ag(A) can be modeled as (Bricaud, Morel, & Prieur, 
1981; Carder et al., 1991) 

ag(A) = ag(440)e-^"'^-'«''), (3) 

it is straightforward to calculate a^(X) after a(/l) and a^iX) 
are known: a^,(A) = «(>!)-a^,(A) - ag(A). Here, aM) is the 
absorption spectrum of pure water, which was taken from 
Pope and Fry (1997). 

The spectral slope S for ag(A), which is a combination of 
both gelbstoff and phytoplankton detritus (Carder et al., 
1991; Lee et al., 2002), can vary in a range from 0.01 to 
0.02 nm~ ' (Carder, Steward, Harvey, & Ortner, 1989; Kirk, 
1994; Reynolds, Stramski, & Mitchell, 2001), and it is 
difficult to accurately estimate its value remotely. As in 
other coastal-water studies (Kirk, 1994; Lee et al., 2002; 
Lee, Carder, Chen, Peacock, 2001), an average S value of 
0.015 nm~ ' was used for all stations in this study. 

4. Results and discussion 

The measured hyperspectral R^(X) of the 20 stations are 
presented in Fig. 2. Though all 20 stations are not far from 
the coast lines (see Fig. 1), there were significant variations 
in magnitudes and spectral shapes among the measured 
RrsU), which clearly indicates that different types of waters 
exist in the region. This water-property variation is sup- 
ported by the measurements taken from the water samples, 
as the measured chlorophyll-a concentration varied from 
1.98 mg/m^ at Station 3 (A:d(490) was 0.237 m" ') to 0.16 

0.008 

0.000 
400 450 500 550 600 650 700 

wavelength (nm) 

Fig. 2. Spectra of the measured remote-sensing reflectance of the 20 
stations. 

400 450 500 550 600 650 700 
wavelength (nm) 

400 450 50O 550 600 
wavelength (nm) 

650 700 

Fig. 3. Measured a^,(>) spectra (a) and specn^I curvature (fl<(,(/l)/o4,(440)) 
(b) of the 20 stations. 

mg/m^ at the nearby Station 4 (A:d(490) was 0.029 m~ '). Of 
the 20 coastal-water stations, the (chl-a) spanned a range of 
0.1^6 to 11.3 mg/m^ and A:d(490) varied from 0.023 to 0.309 
m ' (see Fig. 1), indicating strong local influence to the 
water properties. 

Such wide variations were also found in the pad-mea- 
sured a^(X) spectra (Fig. 3a and b), where 0^(440) varied 
from 0.013 to 0.24 m~ ' among the 20 stations. The 
different fl^,(A) curvatures (a<|,(A)/fl^,(440), Fig. 3b) indicate 
that a single a^(X) spectral shape cannot be used in remote- 
sensing inversions for all stations, though all were in coastal 
waters of the same area. Of these samples, the ratio of 
ad(440)/ap(440) varied from 0.03 to 0.14, suggesting more 
absorption from phytoplankton pigments than that from 
detritus materials. 

In the derivation ofa(?.) spectra from R^{X), the particle 
backscattering specfra (bbp(;.)) were derived first. For each 
spectrum, there are two model parameters: bbp(^) and Y. Y 
is a parameter describing the spectral variation of bbp(;.) 
(Gordon & Morel, 1983), and is empirically derived from 
the measured reflectance (see Table 1). bbp(Ao) is derived 
from a{Xo) and /?rs(Ao). The derived bbp(A) spectra (see Fig. 
4) varied in both magnitudes and spectral shapes, as 
expected for different waters indicated by the measured 
reflectance. No error analyses involving bbp(/l) were made, 
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0.010'- 

0.002 

0.000 

"'  

400 450 500 550 600 
wavelength (mn) 

650 700 

Fig. 4. Modeled particle backscattering spectra of the 20 stations. Model 
parameters of each station are derived from the measured remote-sensing 
reflectance (see Table 1). 

o 0.25- • 410 
*—N o 440 y^ 

'a 
-' 0.20- 
g 
0^ 

• 490 
D  510 
♦ 530 
  1:1 

o 9^ o 

•g 0.15- 

i 
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"1 0.05- 

^ 

^ mm 

•^ 

0.00- ̂ • 
0.00 0.05 0.10 0.15 0.20 

pad-measured ax(X,) (m"') 
0.25 

Fig. 6. Reflectance-derived a^(X) compared with pad-measured fl^(/l) at 
selected wavelengths. 

as this was not the focus of this study and no hyperspectral 
data were available for such a comparison. 

Fig. 5 presents the reflectance-derived fl<|,(A) spectra of 
the 20 stations. No a^(A) were shown for wavelengths 
greater than 580 nm. This is due to the fact that for such 
wavelengths the total absorption coefficient is generally 
dominated by that of pure water. RJ^)^ at those wavelengths 
provides limited or no information about 04,(1), so fl<(,(/l) 
cannot be directly and accurately derived from the RJ^)i) at 
such wavelengths, except for eutrophic waters when a^{)i) 
makes significant contributions to the total fl(/l). Of these 
derived UiJiJ) spectra, they show wide variations in magni- 
tudes and spectral curvatures that are consistent with those 
from sample measurements. 

These reflectance-derived a^p^ spectra were compared 
with those of water samples. Fig. 6 shows the comparison of 
a few selected wavelengths. In linear regression analysis, a 
slope of 0.921 with an intercept of -0.002 m"' were 
obtained (/;^= ).987, A^= 100), with a percentage difference 
of 16.6%. These results suggest that the two sets of a<j,(/l) 
values agree with each other very well. 

400 440 480 520 
wavelength (nm) 

To quantify the difference between the two a<i,(A) spectra 
for each station, the percentage difference (pd) between pad- 
measured spectrum (fl4,(/l)pad) and reflectance-derived spec- 
trum (a4>(/l)der) was calculated as follow. 

mean(a^(A)  d) 
(4) 

Fig. 5. Reflectance-derived a,|,(A) spectra of the 20 stations. 

for a wavelength range of 400-580 nm. This wavelength 
range covers the broad a<j,(A) values around the blue peak, 
where a^(K) spectra vary the most. 

For the 20 stations that measurements were made in this 
study, the pd values ranged from 8.8% to 38.3% with an 
average of 21.4%. Due to the nature of each method used, it 
is not clear yet what contribute most to the difference as 
neither pad-a<j,(/l) nor reflectance-a<|,(/l) can be considered 
error-free. For instance, there is 10-20% uncertainty in the 
pad-measured a^jCA) values due to "j5 factor" used to correct 
the path-elongation effect (Bricaud, Morel, Babin, Allali, & 
Claustre, 1998; Carder et al, 1999; Mitchell &. Kiefer, 
1988). On the reflectance-derived ^4,(1) side, there were a 
couple of parameters and models used in the derivation 
process (see (Lee et al., 2002)), which are imperfect yet in 
ocean-color inversion. For example, a constant S value of 
0.015 nm~' was used for all stations even though the 20 
stations actually covered different water types. Conceptual- 
ly, different S values should be used for each station and 
more consistent fl4,(/i) retrievals from reflectance could be 
expected. Unfortunately, it is not yet known how to accu- 
rately decide the .S value based on information available 
from remote sensing. Note that errors in these parameters 
and models more or less will be propagated to the derived 
04,(1). 

We must also keep in mind that pad-measured ^^.(A) 
specfra are for discrete surface water samples while reflec- 
tance-derived a4>(/l) specfra are for the upper water column 
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(Gordon & Clark, 1980). Considering the combination of 
these uncertainties and errors, an average difference of 
21.4% for wavelengths ranging from 400 to 580 nm is quite 
small and encouraging, indicating the a^,(X) spectra derived 
from the two completely different methods were consistent 
with each other. This consistency indirectly validates the 
QAA algorithm used for the a^,^) derivation from hyper- 
spectral RMl providing a potential to retrieve both major 
and minor pigments from hyperspectral remote sensing 
when combined with other modeling efforts (e.g., (Hoepff- 
ner & Sathyendranath, 1993)). 

As examples. Fig. 7a (for Station 8) and Fig. 7b (for 
Station 11) show the best and worst a^,(A) comparisons of 
this data set, with their/?„(A) also shown. Both Station 8 and 
Station 11 were near the mouth of California bay, but the 
(chl-a) was 3.76 mg/m^ at Station 8 (A:d(490) was 0.155 
m |), and 0.32 mgW at Station 11 (7^^(490) was 0.028 
m ), with a 10-fold difference in the measured a^(440). 
These contrasts are also very distinctive in the measured 

For the reflectance-derived spectrum, a^(A) in the 
range of 400-580 were directly derived from the mea- 
sured R^(X) as described in Section 3, while a^,(A) in the 
range of 580-700 were based on the model of Lee, 
Carder, Mobley, Stweard, and Patch (1998), after a 
smooth connection around 580 nm. This extension to 
700 nm is merely for direct and visual comparison with 
the pad-measured a^(A) as the latter was measured in the 

0.00 
400       450       500       550       600       650 

wavelength (nm) 
700 

0.000 

—»-pad-o,(J,) 
■•■o~ •• dCT-0^(X) 

0.003 

d 0.010 

0.000 0.000 
400      450      500      550       600      650       700 

wavelength (nm) 

Fig. 7. The best and worst a^(X) comparison of this smdy, with (a) at 
Station 8 and (b) at Station 11. 

range of 400-700 nm. In the a^A) comparison, the two 
a^U) spectra are nearly identical in values and curvature 
for Station 8, indicating a successful retrieval of a^().) 
from R^(/L) and/or from water samples. At Station 11, 
however, the reflectance-derived a^A) is about 30% 
smaller than the pad-measured a,|,(A). Similar differences 
were also found when a spectral optimization method 
(Lee, Carder, Mobley, Steward, & Patch, 1999) was used. 
It is not clear yet what caused this bigger difference, and 
more studies are necessary to pinpoint the most likely 
reasons. 

5. Summary 

The QAA recently developed by Lee et al. (2002) is 
applied to a field-collected data set to test its potential of 
independently retrieving absorption spectra of phytoplank- 
ton pigments from hyperspectral remote sensing. The data 
set contains measured remote-sensing reflectance spectra 
(RM)) and phytoplankton absorption spectra (a^(k)), taken 
from waters around Baja California, covering a (chl-a) 
range of 0.16-11.3 mg/m^ 

By analytically inverting measured R^(l) spectra, a^{).) 
spectra were derived. This derivation, unlike other existing 
methods, does not need a hyperspectral a^(?.) model in the 
process. The derived a^(A) spectra were then compared 
with the pad-measured a^X) spectra, and an average 
percentage difference of 21.4% was obtained for wave- 
lengths ranged from 400 to 580 nm. It is not clear yet what 
major factor or factors contribute to the difference, though 
the difference is quite small by remote-sensing standards 
(Hooker, McClain, & Holmes,   1993).  As hyperspectral 
a^(k) can be used for the derivation of pigment composi- 
tion (Hoepffner & Sathyendranath,  1993), the results of 
this study suggest a potential to estimate not only chloro- 
phyll-a but also other accessory pigments through hyper- 
spectral remote sensing. This kind of information  is 
important and useftil as it may help scientists to reach a 
long-anticipated goal: to monitor the variation and succes- 
sion of phytoplankton classes for large areas by remote 
sensing (lOCCG, 2000). 
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